• Raspadori A., Vignali V., Murello A., Giachin G., Samorì B., Tanaka M., Bustamante C., Zuccheri G., Legname G. Evidence of Orientation-Dependent Early States of Prion Protein Misfolded Structures from Single Molecule Force Spectroscopy. Biology (Basel), 16, 1358 (2022).
  • Hui K.K., Chater T.E., Goda Y., Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front. Mol. Neurosci., 15, 893111 (2022).
  • Nakagawa Y., Shen C-h., Komi Y., Sugiyama S., Kurinomaru T., Tomabechi Y., Krayukhina E., Okamoto K., Yokoyama T., Shirouzu M., Uchiyama S., Inaba M., Niwa T., Sako Y., Taguchi H., Tanaka M. Amyloid conformation-dependent disaggregation in a reconstituted yeast prion system. Nat. Chem. Biol., 18, 321-331 (2022).
  • Jaaro-Peled H., Kumar S., Hughes D., Sumitomo A., Kim S.H., Zoubovsky S., Hirota-Tsuyada Y., Zala D., Bruyere J., Katz B.M., Huang B., Flores R. 3rd, Narayan S., Hou Z., Economides A.N., Hikida T., Wetsel W.C., Deisseroth K., Mori S., Brandon N.J., Tanaka M., Ishizuka K., Houslay M.D., Saudou F., Dzirasa K., Sawa A., Tomoda T. Regulation of sensorimotor gating via Disc1/Huntingtin-mediated Bdnf transport in the cortico-striatal circuit. Mol. Psychiatry (2022).
  • Hui, K.K., Endo, R., Sawa, A., and Tanaka, M. A perspective on the potential involvement of impaired proteostasis in neuropsychiatric disorders. Biol. Psychiatry, 91, 335-345 (2022).


  • Nagayoshi Y., Chujo T., Hirata S., Nakatsuka H., Chen CW., Takakura M., Miyauchi K., Ikeuchi Y., Carlyle B.C., Kitchen R.R., Suzuki T., Katsuoka F., Yamamoto M., Goto Y., Tanaka M., Natsume K., Nairn A.C., Suzuki T., Tomizawa K., Wei F.Y. Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Science Adv., 7(13), eabf3072 (2021).


  • Shida T., Kamatari Y.O.*, Yoda T.*, Yamaguchi Y., Feig M., Ohhashi Y., Sugita Y., Kuwata K., and Tanaka M. Short disordered protein segment regulates cross-species transmission of a yeast prion. Nat. Chem. Biol., 16, 756-765 (2020) (cover).
  • Endo, R., Takashima, N., Tanaka, M. Abnormal Local Translation in Dendrites Impairs Cognitive Functions in Neuropsychiatric Disorders. In: Toyama, Y., Miyawaki, A., Nakamura, M., Jinzaki, M. (eds) Make Life Visible, 179-186, Springer, Singapore (2020).


  • Hui, K.K., Chen, Y.*, Endo, R.*, Tanaka, M. Translation from the ribosome to the clinic: Implication in neurological disorders and new perspectives from recent advances. Biomolecules, 9(11), 680 (2019). Invited review. *equal contributions
  • Hui, K.K., Tanaka., M. Autophagy links MTOR and GABA signaling in the brain. Autophagy, 15(10), 1848-1849 (2019).
  • Sugiyama, S., Tanaka., M. Distinct segregation patterns of yeast cell-peripheral proteins uncovered by a method for protein segregatome analysis. Proc. Natl. Acad. Sci. U. S. A., 116, 8909-8918 (2019).
  • Hui, K.K., Takashima, N., Watanabe, A., Chater, T.E., Matsukawa, H., Nekooki-Machida, Y., Nilsson, P., Endo, R., Goda, Y., Saido, T.C., Yoshikawa, T., Tanaka., M. GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABAA receptor trafficking and social behavior. Science Adv., 5(4), eaau8237 (2019).


  • Endo, R., Takashima, N., Nekooki-Machida, Y., Komi, Y., Hui, K.K., Takao, M., Akatsu, H., Murayama, S., Sawa, A., and Tanaka, M. TDP-43 and DISC1 Co-Aggregation Disrupts Dendritic Local Translation and Mental Function in FTLD. Biol. Psychiatry, 84, 509-521 (2018).
  • Chen, C.W., Tanaka, M. Genome-Wide Translation Profiling by Ribosome-Bound tRNA Capture. Cell Reports, 23, 608-621 (2018).
  • Ohhashi Y., Yamaguchi Y., Kurahashi H., Kamatari Y.O., Sugiyama S., Uluca B., Piechatzek T., Komi Y., Shida T., Müller H., Hanashima S., Heise H., Kuwata K, and Tanaka M. Molecular basis for diversification of yeast prion strain conformation, Proc. Natl. Acad. Sci. U. S. A., 115, 2389-2394 (2018).


  • Tanaka, M., Ishizuka, K., Nekooki-Machida, Y., Endo, R., Takashima, N., Sasaki, H., Komi, Y., Gathercole, A., Huston, E., Ishii, K., Hui, K.K., Kurosawa, M., Kim, S.H., Nukina, N.,Takimoto, E., Houslay, M.D., Sawa, A. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease. J. Clin. Invest., 127, 1438-50 (2017)


  • Toyoshima, M., Akamatsu, W., Okada, Y., Ohnishi, T., Balan, S., Hisano, Y., Iwayama, Y.,Toyota, T., Matsumoto, T., Itasaka, N., Sugiyama, S., Tanaka, M., Yano, M., Dean, B., Okano, H., Yoshikawa, T. Analysis of induced pluripotent stem cells carrying 22q11.2 deletion. Transl. Psychiatry, 6, e934 (2016)


  • Suzuki, G., Weissman, J.S. and Tanaka, M. [KIL-d] protein element confers antiviral activity via catastrophic viral mutagenesis. Mol. Cell, 60, 651-660 (2015).
  • Tanaka, M. and Komi, Y. Layers of structure and function in protein aggregation. Nat. Chem. Biol., 11, 373-377 (2015).


  • Nilsson, P., Sekiguchi, M., Akagi, T., Izumi, S., Komori, T., Hui, K., Sörgjerd, K., Tanaka, M., Saito, T., Iwata, N., Saido, T.C. Autophagy-related protein 7 deficiency in APP transgenic mice decreases Aβ in multivesicular bodies and induces Aβ accumulation in the Golgi. Am. J. Pathol., 185(2), 305-13 (2015).
  • Sugiyama, S. and Tanaka, M. Self-propagating amyloid as a critical regulator for diverse cellular functions. J. Biochem, 155, 345-351 (2014).


  • Nilsson, P., Loganathan, K., Sekiguchi, M., Matsuba, Y., Hui, K., Tsubuki, S., Tanaka, M., Iwata, N., Saito, T., and Saido, T.C. Aβ secretion and plaque formation depend on autophagy. Cell Reports, 5, 61-69 (2013).
  • Suzuki, G. and Tanaka, M. Active conversion to the prion state as a molecular switch for cellular adaptation to environmental stress. Bioessays. 35, 12-16 (2013).
  • Suzuki, G. and Tanaka, M. Expanding the yeast prion world: Active prion conversion of non-glutamine/asparagine-rich Mod5 for cell survival. Prion 7, 109-113 (2013).


  • Suzuki, G., Shimazu, N., and Tanaka, M. A Yeast Prion, Mod 5, Promotes Acquired Drug Resistance and Cell Survival Under Environmental Stress. Science 336, 355-359 (2012).


  • Tanaka, M. Tracking a toxic polyglutamine epitope. Nat. Chem. Biol. 7, 861-862 (2011).
  • Tonoki, A., Kuranaga, E., Ito, N., Nekooki-Machida, Y., Tanaka, M., and Miura, M. Aging causes distinct characteristics of polyglutamine amyloids in vivo. Genes Cells 16, 557-564 (2011).
  • Foo, C.K., Ohhashi, Y., Kelly, M.J., Tanaka, M., and Weissman, J.S. Radically Different Amyloid Conformations Dictate the Seeding Specificity of a Chimeric Sup35 Prion. J. Mol. Biol. 408, 1-8 (2011).


  • Ohhashi, Y., Ito, K., Toyama, B.H., Weissman, J.S., and Tanaka M. Differences in prion strain conformations result from non-native interactions in a nucleus. Nat. Chem. Biol. 6, 225-230 (2010).
  • Tanaka, M. A protein transformation protocol for introducing yeast prion particles into yeast. Methods in Enzymology (Guide to Yeast Genetics: Functional Genomics, Proteomics and Other Systems Analysis), 470, 681-693 (2010).


  • Nekooki-Machida, Y., Kurosawa, M., Nukina, N., Ito, K., Oda, T., and Tanaka, M. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc. Natl. Acad. Sci. U. S. A., 106, 9678-9684(2009).


  • McDobald, M., Kendall, A., Tanaka, M., Weissman, J.S., and Stubbs, G. Enclosed chambers for humidity control and sample containment in fiber diffraction. J. Appl. Cryst.,41, 206-209 (2008).

~2007 (selected publications)

  • Krzewska, J., Tanaka, M., Burston, S.G., and Melki, R. Biochemical and functional analysis of the assembly of full-length Sup35p and its prion-forming domain. J. Biol. Chem., 282, 1679-1686 (2007).
  • Tanaka, M., Collins, S.R., Toyama, B.H., and Weissman, J.S. The Physical Basis of How Prion Conformations Determine Strain Phenotypes. Nature, 442, 585-589 (2006).
  • Tanaka, M., Chien, P., Yonekura, K., Weissman, J.S. Mechanism of cross-species prion transmission: An infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121, 49-62 (2005).
  • Tanaka, M., Machida, Y., and Nukina, N. A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J. Mol. Med. 83, 343-352 (2005).
  • Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J.S. Conformational Variations in an Infectious Protein Determine Prion Strain Differences. Nature 428, 323-328 (2004).
  • Venkatraman, P. Wetzel, R. Tanaka, M., Nukina, M., and Goldberg, A.L. Eukaryotic Proteasomes Cannot Digest Polyglutamine Sequences and Release Them Intact during Degradation of Polyglutamine-Containing Proteins. Mol. Cell 14, 95-104 (2004).
  • Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N.R., Doi, H., Kurosawa, M., Nekooki, M., and Nukina, N. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 10, 148-154 (2004).
  • Tanaka, M., Machida, Y., Nishikawa, Y., Akagi, T., Hashikawa, T., Fujisawa, T. and Nukina, N. Expansion of polyglutamine induces the formation of quasi-aggregate in the early stage of protein fibrillization. J. Biol. Chem. 278, 34717–34724 (2003).
  • Tanaka, M., Matsuura, K., Yoshioka, S., Takahashi, S., Ishimori, K., Hori, H., and Morishima, I. Activation of Hydrogen Peroxide in Horseradish Peroxidase Occurs within approximately 200μs Observed by a New Freeze-Quench Device. Biophys. J. 84, 1998-2004 (2003).


  • 野村高志、田中元雅、「疾患関連タンパク質の液‒液相分離とアミロイドの生成・脱凝集」、生化学、94、566‒573 (2022).
  • 田中元雅、中川幸姫、「アミロイドの脱凝集メカニズムを解明」、化学、77、17-21 (2022).
  • 持田啓佑、田中元雅、「膜性オルガネラと非膜オルガネラのクロストーク」、実験医学増刊 -相分離 メカニズムと疾患-、39、116-122 (2021).
  • 田中元雅、遠藤良、「タンパク質の凝集化がかかわる精神障害の発現機構」、実験医学6月号、39、1343-1348 (2021).
  • 玉井真悟、仲本準、田中元雅、「アミロイドの代謝制御と構造多型」、生物物理、60、236-240 (2020).
  • 遠藤良、フイ ケルヴィン、田中元雅、「神経変性疾患と精神疾患をつなぐ分子機構の解明 —タンパク質の凝集化による精神障害の発現—」、生化学、91、551-554 (2019).
  • 遠藤良、田中元雅、「注目の遺伝子TDP-43」、分子精神医学、19、42-45 (2019).
  • 中川幸姫、田中元雅、「シャペロンによるプリオン凝集体の形成と伝播の制御」、蛋白質代謝医学—構造・機能の研究から臨床応用まで、田中啓二企画、医学のあゆみ、医歯薬出版、1111-1115 (2018).
  • 田中元雅、「プリオン様タンパク質の感染性の本体とその生成分子機構の解明」、NEUROINFECTION、22、6-9 (2017).
  • 遠藤良、田中元雅、「脳内に異常タンパク質が広がる!?―プリオン病から認知症へ」、ここまでわかった!脳とこころ(こころの科学増刊)、加藤忠史編、日本評論社、125-130 (2016).
  • 志田俊信、田中元雅、「酵母プリオン凝集体の形成と伝播機構の解明を目指した構造生物学的研究」、Dementia Japan、28、283-292 (2014).
  • 田中元雅(訳)、「Seeds of Dementia(認知症のタネをまくタンパク質)」、日経サイエンス、1月号、74-81 (2014).
  • 田中元雅、「アミロイドの構造多形に着目したプリオンの感染と伝播の分子機構」、生体の科学、64、183-190 (2013).
  • 鈴木元治郎、田中元雅、「新規な酵母プリオンタンパク質Mod5の凝集が生存に有利にはたらくことを発見」、化学と生物、51、228-233 (2013).
  • 田中元雅、「酵母プリオンで発見された細胞の新しい生存戦略」、生体の科学、64、88-95 (2013).
  • 大橋祐美子、田中元雅「オリゴマーの非天然相互作用が感染性の高いプリオン凝集体を誘導する」、実験医学、5月号、1277-1280 (2010).
  • 田中元雅、猫沖陽子「アミロイド構造による神経変性部位特異性の制御」、生物物理、50、186-187 (2010).
  • 田中元雅「神経変性疾患におけるアミロイドの構造多型とその生理的影響」、実験医学、6月号、1340-1344 (2009).
  • 田中元雅「プリオン病の感染・伝搬におけるプリオン仮説の現状」、実験医学増刊号 脳神経疾患の分子病態と治療への展開、貫名信行、西川徹編、羊土社、25、115-121 (2007).
  • 田中元雅「酵母を使ってプリオン病を理解する」、化学と生物、45、676-678 (2007).
  • 田中元雅「酵母プリオン[PSI+]の系を用いたプリオン感染・伝播機構の解明」、神経変性疾患のサイエンス、高橋良輔編(南山堂)東京、129-138 (2007).
  • 後藤祐児、桑田一夫、関島良樹、田中元雅、他「アミロイドーシス発症の分子機構解明を目指して:現状と展望、夢」、細胞工学、2月号、181-185 (2007).
  • 田中元雅「酵母プリオン[PSI+]の系におけるプリオン株出現の物理的基盤」、細胞工学 2月号、145-150 (2007).
  • 田中元雅「酵母プリオン[PSI+]システムによる“プリオン仮説”の最終証明」、蛋白質核酸酵素、3月号、207-214 (2005).
  • 田中元雅「酵母プリオンを用いた“蛋白質オンリー仮説”の最終証明」、実験医学、8月号、1734-1736 (2004).
  • 貫名信行、田中元雅「ポリグルタミン含有蛋白の構造変化」神経研究の進歩、46巻5号、661-668 (2002).